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McKeague and Qian (2015). We first discuss their formulation of the problem via a
general random covariate model, but with a traditional structure of independent,
homoscedastic residuals that are also independent of the covariates. A principle
focus of their paper involves testing a null hypothesis of no marginal effect of the
linear slope parameters. We present some alternate paths to test this null
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Introduction

The following comments relate to material in McKeague and Qian (2015).
(Henceforth referred to as M&Q.) We have found this material to be very
worthwhile reading and we thank the organizers for the opportunity to provide
these comments.

M&Q study a maximum statistic, én, that can be used to test for the null

hypothesis of no effect of covariates in a linear-model analysis. Their major focus is
on the development of a bootstrap style procedure that serves the dual purpose of

estimating the distribution of én and then using this estimate as the basis for a test

of the null hypothesis. Our perspective is that their procedure is composed of two
almost separate components - a simulation of the distribution under the null and a
bootstrap estimate that is valid away from the null. Our comments focus on the
testing component of their procedure, and on alternate tests for this hypothesis.
The first part of our discussion deals with this perspective of their
formulation. It points to concerns that are treated in the remainder of our
discussion and, at the end, raises a few questions for the authors. Section 2 of our
discussion sketches a generalization of their basic statistical model that we have
treated elsewhere in more detail, and suggests that a modification of their test may
be suitable also for this generalization. Section 3 discusses a related, though
different, test of their null hypothesis that is embedded in Berk, et. al. (2013).
Section 4 describes bootstrap ideas that do yield a valid test of the null hypothesis

without attempting to estimate the distribution of én. That section concludes with

some prospective remarks about our ongoing research into bootstrap methods for
this and related problems.

1. Formulation

The essential structure of the observed data is implicit in the first sentence of
Section 2 and in equation (2) of McKeague and Qian (2015). (Henceforth referred to

as M&Q.) The observations are a sample {Xin = 1,..,n} from a population whose
distribution has the property that

(1.1) Y=0,+X"B+e¢.

Here X is a p-vector of covariates and f is a p-vector of parameters. Since X is

random we refer to this formulation as having a random-covariate structure in
contrast to the traditional structure in which the elements of each X, are viewed as

fixed constants. The marginal distribution of X is not known or constrained (except
that it is assumed to have a finite covariance matrix). The residual variables

{e,:i=1,.,n} are an iid sample and independent of {X,}. Their distribution is not

specified in advance, except that they are assumed to have a finite variance, and
hence be homoscedastic.



A primary goal of M&Q is to develop a test of the null hypothesis H,: =0 in
(1.1) that is based on a maximal statistic drawn from simple regressions rather than
from the multiple regression analysis. In order to describe this statistic, and to
prepare for further discussion, some additional notation may be helpful. The
following quantities are discussed in M&Q but not given explicit notations. The
population and the sample slope coefficients from the simple (one-dimensional,
marginal) regressions are

: cov(Xk,Y) ~ &)\V(Xk,Y)
B = =

5 - T == ) k= 1,.., .
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The corresponding t-statistics are

SE(BL)
Where SE'(B)=3.(¥,~7 - B(X, - %)) /2 (x, - X.)".
M&AQ then define
(1.2) k =arg max‘c/o?r(Xk ,Y)| = argmax|Tk'|

where the last equality results from standard textbook manipulations. They then
consider the statistic

(1.3) 6,=pi = COA(?X?

kn
As M&Q aptly point out, direct bootstrap methods are not appropriate if one
wishes to use this statistic to test Ho. (The flaw in attempting to use a bootstrap here
is evident in the simulations in Section 4: The conventional bootstrap procedure
leads to a strongly anti-conservative test of Ho.) For a test of Ho one needs the null

distribution of én. This null distribution cannot accurately be obtained via a
standard bootstrap since the distribution of én does not converge uniformly in a
1/\/; neighborhood of the null. But it is possible to simulate the distribution of én

under the null. The simulated random variable is given in the paper as V,(0). This

random quantity depends on an independent simulation of a mean-zero
multivariate normal random vector, Z(O) , whose covariance matrix is described in

a display in Theorem 1. [The covariance matrix for this vector could be estimated
directly from the data. In their computer code (which they have kindly shared with
us) M&Q appear to use a bootstrap to estimate this covariance matrix. This may be
more accurate in practice than a direct estimate of the covariance, but the paper
provides no evidence on this secondary issue.]

The more general bootstrap result in Theorem 2 is the basis for the author’s
ART procedure. This should be viewed as a marriage of the simulation described

above and a more standard bootstrap estimate of the distribution of /n (én - Gn) :

The bootstrap is used when the data convincingly reject the null hypothesis (when



max (|Tn AT,

should not be interpreted as providing a reliable bootstrap estimate for the

) > A,) and otherwise the simulation at b, = B, =0 is used. Theorem 2

distribution of v/n (én — Gn) at every true parameter (which M&Q correctly remark

does not exist). Such a global bootstrap based on this theorem (and hence without
knowledge of b, ) would require a consistent estimate of b, but such an estimate
does not exist. (One would also need to know, or assume, a-priori that B, satisfies
the special assumption of Theorem 1 as expressed in the paragraph above the
Theorem. This would not, for example, be the case if the true B in (1.1) were
sparse.)

We have two additional questions about the formal results.
(i) The ART simulation and test is based on the distribution of the selected slope
statistic in (1.3). But selection is based on the maximal |t|-statistic as in (1.2). The

1
len

maximal |t|-statistic is ,and, in general, TIQl ‘ # én . Such a test statistic would have

the advantage of being invariant under coordinate-wise affine transformations of
the X-variables, whereas the statistic in (1.3) is not. Did you investigate the
performance of such a procedure? In the simulations of Section 4 there would be
very little difference in numerical value or performance since the X-coordinates
there are independent with equal variance, but differences might be more
noticeable in other settings.

(i)  Theorems 1 and 2 are proved within a formulation in which p remains fixed
as n — oo. Yet, the simulations in Section 4 address some cases in which p is
comparable to n, or even larger. (It is an advantage of the ART procedure over more
familiar procedures based on inference about the full vector B in (1.1) thatit can

numerically deal with such situations.) The ART procedure appears to perform
satisfactorily even in these large p cases. Is this perhaps only because the choice of
standard normality for the distributions of X and ¢ are so favorable to ART, or is
this a more general phenomenon? s there any asymptotic theory to justify the
simulation at the heart of ART when p — < along with n?

2.  Assumption-lean Models

Buja, et. al. (2015) contains a detailed exposition of an “assumption-lean” regression
formulation. In such a formulation one need only assume that the observed

variables are a random sample {Xin = 1,..,n} from a joint distribution possessing

low-order moments. The target of inference is the population slope; this can be
defined in any one of several equivalent ways. A straightforward version is to define

the population slope vector via B° = argmin, E(Y — X)/)2 . An alternate form that is
more analogous to (1.1) involves writing

(2.1) Y =a,+X" B +¢& where cov(X,e)=0.

(We use the notation ° here, rather than just B in order to distinguish this
formulation from that of (1.1). (2.1) is more general that (1.1), but if the



assumptions of (1.1) hold and the population model is full-rank then B°* = and

B #B")

This formulation shares with (1.1) the feature that X is a random vector
whose marginal distribution is unknown (except for the existence of low order
moments). But it is otherwise much broader and assumption-lean. The randomness
of X (in both (1.1) and (2.1)) has an important side benefit in that in general it

justifies the asymptotic use of an X-Y bootstrap such as that in Theorem 2 when B°
isnotina +n neighborhood of 0, and otherwise satisfies the assumptions in that
Theorem. But, as noted above, the core of the ART procedure as a test is really a
simulation of the null distribution of the statistic én. We believe that this simulation
should also be valid in the assumption-lean setting of (2.1), and should hence lead to
a useful test of H: B* =0. Here’s why.

Buja, et. al. (op. cit.) describes interpretations and inference for f° from data

as in (2.1), and several other aspects of such a formulation. The sandwich estimator
of Huber (1967) and White (1980a,b; 1982) plays a key role in such inference. For
M&Q a key ingredient of the simulation in ART is the covariance matrix in Theorem
1at B=0. This relates to a form of the sandwich estimator for the covariance

matrix of the vector of marginal sample slopes, B '. The appropriate sandwich

estimator would be
-1

(2.2) [diag({?ar(xk)})rM[diag({@(xk)})} where

— A — 2 _ 2
M, =n" i(Yi ~7-B((x), _x,k)) (((x,),-X..)) -
(If B' is assumed to liein a 1/\/; neighborhood of 0 then the term [Ai',i ((Xi)k - )_(,k)
in (2.2) is asymptotically negligible and can be ignored.) The matrix M is very
similar to the covariance matrix described in Theorem 1; we believe they are

asymptotically equivalent when B' is assumed to lie in a 1/\/; neighborhood of 0.

(The inverse diagonal matrix terms do not appear in the covariance expression
described in Theorem 1, but are instead accommodated in the first denominator of

(4).)

In summary, we believe that the simulation idea embodied within ART can
be directly applied to testing the null hypothesis H : B° =0. Thus the simulation

component in ART may turn out to be more flexible and robust than appears from
the specific formulation via (1.1). (The bootstrap idea in M&Q for the distribution of

Jn (én — Gn) away from the null and other special points excluded by the

assumptions of Theorem 1 is also almost automatically valid under (2.1).)
3. POSI

Berk, et. al. (2013) provides a simultaneous confidence interval procedure for
estimates of slope coefficients in a setting like that of (1.1), but with the elements of



X treated as fixed constants, rather than as random variables. To be more precise,
the setting for that paper involves observation of an nx1 vector Y satisfying

(3.1) Y=0a,1+X,, B +& where e~ N,(0.6°1,,,).

Here, the design matrix, X is composed of observed constants.

nxp

nxp’

Primary interest in Berk, et. al. (op. cit.) focuses on finding simultaneous
confidence levels for the slope coefficients in the family of all possible sub-models
composed of subsets of columns of X. However that paper also discusses cases in
which the family or the targeted slope coefficients are restricted in some fashion.
One possibility is to restrict the sub-models to consist of only one predictor at a
time. (See possibility (2) in subsection 4.4 of that article.) The family of confidence
intervals is thus composed of confidence intervals for simple, marginal regression
coefficients. These coefficients can be combined into a vector B"‘, where the
notation is analogous to that used following (1.1). Hence the POSI procedure
provides a valid test of H; : B =0 relative to the model (3.1).

This POSI test is also valid for testing the null hypothesis of M&Q -
H, : B' =0 within the model (1.1) with Gaussian errors. (See comment (iii) below

on this issue.) In most cases results within (1.1) and (3.1) do not transfer so directly.
But in the case of this null hypothesis the direct carryover is justified because under
the null hypothesis (but not otherwise) the distribution of X is an ancillary statistic.
Thus a test that is conditionally valid (i.e., is valid under (3.1)) is also
unconditionally valid (i.e., under (1.1)). Buja, et. al. (op. cit.) contains an extensive
discussion of ancillarity issues in random design models like (1.1) and (2.1).

The POSI test described here is not a clone of the test provided by the
simulation in ART because the critical value in Berk, et. al. (op.cit.) is drawn from the

distribution of ‘T]; rather than from the distribution of én as defined in (1.3). (See

our comment 1(i).) In other respects the simulations in the two procedures are very
similar. Comment (ii) below points to one additional structural difference but
otherwise there seem to be only minor technical differences that are asymptotically
insignificant.

Some additional comments may be helpful.
(i) R-code is available for computing the critical constant for the POSI test. This
code has an explicit option for the restriction to marginal sub-models as described
above. See Buja (2015).
(i)  The POSI test involves an estimate for the residual variance, ¢°, in (3.1). The
POSI software and the theory supporting it draw this estimate from the full model
Sum of Squares for Error. The simulation portion of ART draws an estimate for the
analogous purpose via the sandwich style expression in Theorem 1 at B =10
combined with (4). This is asymptotically equivalent (under suitable assumptions)
to what would appear at the corresponding step of the POSI algorithm if one were to
draw the estimate of 6> under the assumption that Ho is true (i.e., from the
restricted model rather than from the full model). The POSI software can be
modified to proceed in this fashion. Unless n - p is small we would not recommend
proceeding in this fashion because the resulting test will not be similar (even under



assumptions of normality). But for small or negative values of n - p such a path
would be desirable.

(iii)  The residual distributions in (1.1) are more general than in (3.1); in (3.1)
they are required to be Gaussian whereas in (1.1) they need only be iid (with finite
variance). Berk, et. al. (op. cit) does not explicitly discuss such an extension of the
model in (3.1). However, in retrospect, after reading M&Q we realize that the
considerations in the POSI paper appear to be asymptotically valid under such an iid
assumption for the coordinates of € in (3.1). We conjecture that this is so, and hence

that the POSI test of H, and Ho is asymptotically valid.

4.  Abootstrap test

A too casual reading of M&Q might incline one to feel that a bootstrap test of their Ho
is not possible unless the test also includes a simulation component, as does their
ART. This is not so. What is true is that a pure bootstrap estimate of the distribution

of a statistic like their én would be flawed, and this would also be the case for a
statistic like ‘T]; ‘ discussed above. A valid bootstrap test of Ho requires a different

structure.
Here is an outline of a simple bootstrap test of Ho that is (asymptotically)

valid under the model (1.1). Consider a family of confidence sets for B' of
rectangular form:

(4.1) Rectc(ﬁl):{ﬂ1 [3,1—[3',1 <C, k=1,..,p}

Use a bootstrap to determine the constant, Cpoot, for which these rectangles have the
desired estimated coverage, 1—a . Then reject Ho if 0 & Rect, . This procedure has

the desired asymptotic coverage as n — o= for fixed p, and provides asymptotically
satisfactory performance. (There is no claim here of any optimality for this test. The
particular form for the rectangles in (4.1) is suggested here only for expositional

convenience, and as a parallel to the focus of M&Q on én .) In this simple setting the

asymptotic properties follow from standard bootstrap theory, but see Buja and
Rolke (2015 - and earlier) for a full, general treatment of such procedures.
Although this procedure does not attempt to discover the true distribution of

a maximum statistic like én it does involve the distribution of én —0,. The form of

the rectangles in (4.1) was chosen because of its relation to the simulation in ART.
Other forms of confidence region may yield more satisfactory performance. For
example, one could choose the sides of the rectangle to be proportional to the values

of sandwich estimates of SD([')’;) . This bootstrap procedure can be converted to

create yield an asymptotically valid statement about the distribution of én -0,
under the null hypothesis. As such, it could be used in place of the simulation in ART
involving V. (0).



Along with collaborators including K. Zhang we are preparing a
methodological study of bootstrap confidence intervals for the slope coefficients in
the assumption-lean model. The bootstrap estimator we are proposing is a double
bootstrap, with the second level of bootstrap improving the calibration of intervals
provided by the first level. Asymptotic theory in our study suggests that such a
double bootstrap can have better performance than a single bootstrap. (Based on
helpful dialog with M&Q we note that that our proposal involves a more
sophisticated, and more computer intensive, style of bootstrap than the CPB
bootstrap used in their simulations - of course this does not negate the objection to

using a bootstrap of any sort to estimate the distribution of a statistic such as én )
Our research to date has been focused on intervals for pre-chosen coordinates f3;

(or B;"). But after reading M&Q we realize that the methodology in our study can be

adapted to the simultaneous confidence problem described here, and can also yield
more evolved forms of confidence rectangles than those in (4.1). We intend to
pursue such issues in future.

Both space and time constrain us from going into further detail here. But we
are indebted to M&Q for indirectly providing the motivation to study such an issue
as well as for the very interesting treatment and results involving their ART
procedure.
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